Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000	0 0000000	0 0000000000 000000000	0 00000000000 000000000	0 0

Memory & Logic Based on Spin

Ma Yu

Sep. 2016

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices On Chip Memories Boolean Logic Other Logic All-Spin Logic Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

Basic Devices and Phenomena	On Chip Memories		Non-Boolean Computing	
• 000000000 000	0 0000000	0 0000000000 00000000	0 00000000000 00000000	0 0

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices On Chip Memories Boolean Logic Other Logic All-Spin Logic Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

Basic Devices and Phenomena On	Chip Memories	Boolean Logic	Non-Boolean Computing	
0 0 ●000000000 000 000	00000	0 0000000000 000000000	0 00000000000 000000000	0 0

What is Spin?[J.Sun,Nature,2003]

Ma Yu Snin Povi

Spin Review

Basic Devices and Phenomena	On Chip Memories		Non-Boolean Computing	
0 0●00000000 000	0 0000000	0 0000000000 00000000	o 00000000000 000000000	

Spin-Transfer Torque Effect

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 00●0000000 000		0 0000000000 000000000	0 00000000000 00000000	

Energy of Spin

Energy & States of Spin Energy – The energy is the largest at $\theta = 90^{\circ}$ State – The stable state is $\theta = 0^{\circ} or 180^{\circ}$ Ma Yu

Spin Review

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000●000000 000	0 0000000	0 0000000000 000000000	0 000000000000 000000000	0 0

Laudau-Lifshitz-Gilbert(LLG) Equation

LLG equation models the behavior of the magnetization, m, of a nano-magnet in the presence of an effective magnetic field, H_{eff} , and a spin current, Is[A. Brataas, nature, 2012].

$$\frac{\partial \mathbf{m}}{\partial t} = \underbrace{-|\gamma| \left(\mathbf{m} \times \mathbf{H}_{eff}\right)}_{\text{Precession}} + \underbrace{\alpha \left(\mathbf{m} \times \frac{\partial \mathbf{m}}{\partial t}\right)}_{\text{Damping}} - \underbrace{\frac{1}{qN_s} \mathbf{m} \times (\mathbf{m} \times \mathbf{I}_s)}_{\text{Spin torque}}$$

Where N_s is the number of spins comprising the nano-magnet given as $N_s = \frac{M_s V}{\mu_B}$, M_s is saturation magnetizationand, V is the volume of the nano-magnet, μ_B is the Bohr magneton.

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000		0 0000000000 000000000	0 00000000000 000000000	
Basic Phenomena				

Details in LLG Equation

Basic Devices and Phenomena	On Chip Memories		Non-Boolean Computing	
0 0000000000 000	0 0000000	0 0000000000 000000000	0 00000000000 000000000	0 0

Current-Induced Domain Wall Motion

There are 4 kinds of DMs.

Direction of Magnetic Anisotropy

IMA – In-plane magnetic anisotropy

PMA – Perpendicular magnetic anisotropy

- Néel wall occurs in thin and narrow nanostrips
- Vortex or Bloch wall occurs when the nanostrip is wider and thicker

Basic	Devices a	and Ph	enomena	
0000	000000			

On Chip Memorie

Boolean Logic 0 0000000000 000000000

Forward 00

Basic Phenomena

Current-Induced Domain Wall Motion

- (a)&(c) accurs in thin and narrow nanotrips[R.D,IEEE,1997]
- (b)&(d) accurs in wider and thicker nanotrips [Y.Nakatani,Magn,2005]

Electrical current through the DWS could drive a DW in the direction of electron flow.[L.Berger,APL,1978]

Ma Yu

Spin Review

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0	0	0	0	
000		000000000	000000000	

Current-Induced Domain Wall Motion

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 0000000000 000		0 0000000000 000000000	0 00000000000 00000000	

Spin-Orbit Torques(SOT)

• Spin current:
$$I_s = \theta_{SH} \frac{A_s}{A_q} I_q \sigma$$

• I_s can be larger than I_q for scattering

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000		0 0000000000 000000000	0 00000000000 000000000	

Topological Insulators

Properties

Behavior – Like a quantum Hall insulator Current – Similar to SOT

- More efficient than SOT.
- Can improve energy efficiency of spin devices for ultralow power computing at room temperature.
- Haven't found any references designing based on this.

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 •00	0 0000000	0 0000000000 00000000	o 00000000000 000000000	0 0

Spin-Transfer Torque Devices

Vertical Spin Valve

Tunneling magneto-resistance(TMR)[S.Ikeda,IEEE,2007]

Layer – Pinned layer & Free layer **Spacer** – Insulator **Function** – Conductance is high(P) or low(AP) **Resistance** – $R = \left(\frac{R_P + P_{AP}}{2} + \frac{R_P - R_{AP}}{2}\right) \cos\theta$

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 0●0		0 0000000000 000000000	0 00000000000 000000000	
Spin-Transfer Torque Devices				

Lateral Spin Valves

- Both injector and detector are FM
- The channel is NM
- Local & nonlocal measurements

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 00●		0 0000000000 000000000	0 00000000000 000000000	
Spin-Transfer Torque Devices				

Lateral Spin Valves

Non-Local Measurement

Basic Devices and Phenomena O	n Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000	000000	0 0000000000 000000000	0 00000000000 000000000	0 0

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices

On Chip Memories

Boolean Logic

Other Logic All-Spin Logic Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

Basic Devices and Phenomena 0 0000000000	On Chip Memories 0 •000000	Boolean Logic o ooooooooooooooooooooooooooooooooo	Non-Boolean Computing 000000000000000000000000000000000000	Forward 0 0
Memory		000000000	00000000	

Basic Structure

1T-1MTJ Bit-cell

Write Operation

- ▶ WL is charged to V_{DD}
- '0' $BL \rightarrow V_{DD}$; $SL \rightarrow V_{SS}$
- '1' $BL \rightarrow V_{SS}$; $SL \rightarrow V_{DD}$
- ► V_{DD} in '0' is smaller than that in '1'

Read Operation

- WL is charged to V_{DD}
- Give a current then compare voltage and vice versa.

Basic Devices and Phenomena 0 0000000000	On Chip Memories ○ ○●○○○○○		Non-Boolean Computing 0 00000000000	Forward 0 0
000 Memory		000000000	00000000	
Memory				

Benefits & Issues

Benefits

- 1) Nonvolatile can be powered off
- 2) Itegration density can be $3 4 \times$ than that of SRAMs
- 3) The half-select issue in SRAM is absent due to nonvolatile
- 4) STT-MRAM arrays may be embedded with new functionality at almost no cost.

Issues

- 1) High write energy
- 2) Read/write stability
- 3) Oxide reliability

Ma Yu

Spin Review

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
				00
	000000			
000		00000000	00000000	

Domain Wall Based MTJ Structure

Memory

Writing Operation

• $WWL \rightarrow V_{DD}$

'0'
$$BL \rightarrow V_{DD}$$
; $WSL \rightarrow V_{SS}$

• '1'
$$BL \rightarrow V_{SS}$$
; $WSL \rightarrow V_{DD}$

Reading Operation

- $RWL \rightarrow V_{DD}$
- Same as the basic device discussed before.

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000	0000000	0 0000000000 000000000	0 00000000000 000000000	
Memory				

.

Improvement

Benefits

- Separation of read and write rurrent path.
- Low resistane in the write current path.
- Large write current doesn't flow through tunnel oxide, the reliability is improved.
- Distinguishability between states in the DWMTJ can be improved by using a thicker tunneling oxide, leading to better cell TMR ratio.

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories 0 0000000	Boolean Logic 0 0000000000 000000000	Non-Boolean Computing o oooooooooooo ooooooooooooooooooooo	Forward 0 0
Memory				

Racetrack Memory[IBM,Science,2008]

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000	0 00000000	0 0000000000 000000000	0 00000000000 00000000	
Memory				

Racetrack Memory

Benefits

- Extremely high integration density.
- Average access time will be 10 - 50ns while HDD and MRAM are (5ms) and (> 10ns) perspectively.

Issues

- High current density.
- Thermal noises.
- The latency can cause the access time to be large and variable.

Ma Yu

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
				0 0
000000000	000000	000000000	00000000000	

Memory

Spin-Orbit Torque Based MTJ Memory Device

Writing Operation

- $WWL \rightarrow V_{DD}$
- '0' $BL \rightarrow V_{DD}$; $WSL \rightarrow V_{SS}$

• '1'
$$BL \rightarrow V_{SS}$$
;
 $WSL \rightarrow V_{DD}$

Reading Operation

- $RWL \rightarrow V_{DD}$
- Same as the basic device discussed before.

Ma Yu

Spin Review

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories 0 0000000	Boolean Logic ● ○○○○○○○○○○○ ○○○○○○○○○○	Non-Boolean Computing o oooooooooooo ooooooooooooooooooooo	Forward 0 0

OUTLINE

Basic Devices and Phenomer Basic Phenomena Spin-Transfer Torque Devices On Chip Memories Boolean Logic

Other Logic All-Spin Logic

Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic ○ ●000000000 ○00000000	Non-Boolean Computing o oooooooooooo ooooooooooooooooooooo	Forward 0 0
Other Logic				

Basic Devices and Phenomena

Basic Phenomena Spin-Transfer Torque Devices

On Chip Memories Boolean Logic

Other Logic All-Spin Logic

Non-Boolean Computing

Neuromorphic Computing Spin-Torque Oscillator

Forward

Basic Devices and Phenomena o ooooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic 0 0000000000	Non-Boolean Computing o oooooooooooooooooooooooooooooooooo	Forward 0 0
Other Logic		000000000	00000000	

Characteristics for logic

Five essential points: [Behtash, Nature.nano, 2010]

- Concatenability Input and output should be in the same form.
- Nonlinearity The input and output should be bistability ,i.e. one should provide digitization of information.
- Nonreciprocal Output shouldn't influence the input.
- Gained Output must be charged by indenpendent sources.
- Constructable All other logic functions can be constructed based on a minimal set of operations.

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic ○ ○○●○○○○○○○○	Non-Boolean Computing o oooooooooooo ooooooooooooooooooooo	Forward 0 0
Other Logic				

Normally-off Computing

Instant-on & Normally-off Computing[K.Ando,APL,2014]

- The present computers are designed on the premise that power will always be supllied.
- Normally-off computer is only suplied while operating.

Requirement of Normally-off computer

- Non-volatile devices that don't require a power supply to remain inforemation.
- High speed operation to manipulate the information.

Basic Devices and Phenomena o ooooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic 0 0000000000	Non-Boolean Computing o oooooooooooooooooooooooooooooooooo	Forward 0 0
Other Logic		00000000	000000000	

Normally-off Computing

Figure: Layered structure of computer systems. Ma Yu Spin Review

Advantages

- High density
- High speed

Advantages

- MRAM technologies have made marvelous advances
- Effective power reducts by over 80% in mobile CPU [H.Yoda,IEEE,2012]

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories 0 0000000	Boolean Logic o ooooooooooooooo	Non-Boolean Computing o oooooooooooooooooooooooooooooooooo	Forward O O
Other Logic		00000000	00000000	

Normally-off Computing[K.W.Kwon,IEEE,2014]

Backup Operation

Turn on BEN.

Resume Operation EQ=1, REN=0 EQ=0, REN=1.

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic 0 00000000000	Non-Boolean Computing 0 000000000000 000000000	Forward 0 0
Other Logic		00000000	00000000	

True Random Number Generators[Akio,APL,2014]

- PRNGs are implemented in software and use deterministic algorithms to generate a sequence of RNs.
- For highly secure data encryption we need TRNGs, which are implemented in hardware.

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000		0 00000000000 0000000000	0 00000000000 00000000	

Other Logic

True Random Number Generators

- 1) Reset to a known magnetization state;
- 2) Switch with probability of 0.5;
- 3) Read the generated random bit. Compared.

Switching Probability

$$P_{SW} = 1 - exp\left\{-\frac{t}{\tau_0}exp\left[-\Delta\left(1 - \frac{l}{l_{c0}}\right)\right]\right\}$$

Where t is the duration of the current pulse, τ_0 is the attempt time, Δ is the thermal stability parameter of the nanomagnet, and I_{c0} is the critical switching current at 0K.

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
o ooooooooo ooo		0 00000000000 0000000000	0 00000000000 00000000	

Other Logic

True Random Number Generators

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000		0 00000000000 000000000	0 00000000000 000000000	
Other Logic				

All-Metallic Logic

- Coupling layer can be p or n type.
- Similar to *pMOS* and *nMOS*.

Ma Yu

Spin Review

	Devices	
0000	00000	

Other Logic

On Chip Memorie

Forward

All-Metallic Logic[Daniel, DAC, 2012]

Advantages & Disadvantages

Lower voltage supplied – Sub-100mV. Higher leakage and worsen energy efficiency.

Ma Yu

Spin Review

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories 0 0000000	Boolean Logic ○ ○○○○○○○○○○ ●○○○○○○○○	Non-Boolean Computing o oooooooooooo ooooooooooooooooooooo	Forward 0 0
All-Spin Logic				

Basic Devices and Phenomena

Basic Phenomena Spin-Transfer Torque Devices

On Chip Memories Boolean Logic

Other Logic

All-Spin Logic

Non-Boolean Computing

Neuromorphic Computing Spin-Torque Oscillator

Forward
Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic ○ ○○○○○○○○○○ ○●○○○○○○○	Non-Boolean Computing o oooooooooooo ooooooooooooooooooooo	Fo
All-Spin Logic				

A general ASL devices[C.Augustine,IEEE,2011]

- Concatenability Spin orientation.
- Nonlinearity Energy and angle.
- Nonreciprocal $T_3 \& T_4$.
- Gain
 Independent VDD.
- Constructable Will discuss later.

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic 0 0000000000000000000000000000000000	Non-Boolean Computing o oooooooooooooooooooooooooooooooooo	Forward 0 0
All-Spin Logic		00000000	00000000	

ASL with no Clock

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic ○ ○○○○○○○○○○ ○○○●○○○○○	Non-Boolean Computing o oooooooooooo ooooooooooooooooooooo	Forward 0 0
All-Spin Logic				

ASL with Clock

- Not rely on standby power. VDD is supplied only when information propagation.
- Not have to rely on the difference in polarization (highP and lowP) of input and output terminals.

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic ○ ○○○○○○○○○○○ ○○○○○○○○○○○	Non-Boolean Computing o ooooooooooooo oooooooooooooooooooo	Forward 0 0
All-Spin Logic				

ASL with Clock with Biaxial anisotropy

+ Switching time of ASL_CB can be less than 5*psec* while the former two devices are more than 50*psec*.

Basic Devices and Phenomena	On Chip Memories	Bo
000000000	000000	00
		00

Boolean Logic

Forward 00

ASL with Clock with Biaxial anisotropy

Ma Yu

Spin Review

All-Spin Logic

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000		0 0000000000 000000000	0 00000000000 000000000	

Majority gate[Sheldon, SSCTLD, 1962]

Definition Majority gate

For a majority gate function M, we have the following result, where N_1 and N_0 are number of 1 and 0.

$$M(x_1, x_2, \dots, x_k) = \begin{cases} 1, & N_1 > N_0 \\ 0, & N_1 < N_0 \end{cases}$$

Theorem

A switching function F can be realized with only majority gates iff for any two n-bit input combinations, r_i and r_j , there exists an x_k such that

$$r_{ik} = F(r_j)$$
 and $r_{jk} = F(r_j)$

Ma Yu

Spin Review

All-Spin Logic

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic ○ ○○○○○○○○○○ ○○○○○○○○○○○	Non-Boolean Computing o oooooooooooo ooooooooooooooooooooo	Forward 0 0
1				

All-Spin Logic

Implementation of Majority gate

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000		0 0000000000 00000000	0 00000000000 00000000	
All-Spin Logic				

_ . . _ .

Ma Yu Spin Review

Functionality Enhanced ASL

An example of FEASL – All Adder Implementation.

 $C_{out} = M_3(A, B, C_{in})$ Sum = M₅(A, B, C_{in}, \overline{C}_{out} , \overline{C}_{out})

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
o ooooooooo ooo	0 0000000	0 0000000000 000000000	• 00000000000 00000000	0 0

OUTLINE

Basic Devices and Phenomen Basic Phenomena Spin-Transfer Torque Devices On Chip Memories Boolean Logic

Other Logic All-Spin Logic

Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories 0 0000000	Boolean Logic 0 0000000000 000000000	Non-Boolean Computing 0 •0000000000 000000000	Forward O O
Neuromorphic Computing				

Basic Devices and Phenomena

Basic Phenomena Spin-Transfer Torque Devices

On Chip Memories Boolean Logic Other Logic All-Spin Logic Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

Basic Devices and Phenomena Or	n Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000	000000	0 0000000000 000000000	0 0●0000000000 000000000	००

Neuromorphic Computing

Why we use Neuromorphic Computing?

- Extremely efficient in perception and cognition
- Significantly less power and area

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing
000000000	0000000	0000000000	0000000000
000		000000000	000000000

STT Magnetic Neuron[A.Sengupta,IEEE,2015]

Ma Yu

Spin Review

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000	0 0000000	0 0000000000 000000000	0 00000000000 00000000	0 0

STT Magnetic Neuron

Basic Devices and Phenomena	On Chip Memories
000000000	0000000

Forward 0**0**

Neuromorphic Computing

Bipolar Lateral Spin Valve Neuron

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000		0 0000000000 000000000	0 00000000000 000000000	

Unipolar Domain Wall Neuron

Direction of *I_S* presents excitory or inhibitory.

Ma N	ſu
Spin	Review

Basic Devices and Phenomena	On Chip Memories
000	

Neuromorphic Computing

Unipolar Spin Hall Effect Neuron

basic Devices and Phenomena On Chip Memories Boolean Logic Non	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 000000000 000000

Soft-Limiting Nonlinear Neuron

SNN are preferrd in challenging pattern recognition.

Definition

SNN is neuron with intermediate outputs between the two extreme states.

Improved modeling capacity

- Higher network accuracy
- Lower network complexity

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
o 000000000 000	0 0000000	0 0000000000 000000000	0 0000000000000 000000000	0 0

Soft-Limiting Nonlinear Neuron[D.Fan,IEEE.nano,2015]

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 0000000000 000		0 0000000000 000000000	0 00000000000000000000000000000000000	

Soft-Limiting Nonlinear Neuron[D.Fan,IEEE.nano,2015]

$$R_{neuron} = \frac{A}{Bx + C}$$

Where A, B, C are constants.

$$V_{0} = V_{s} \frac{R_{ref}}{R_{ref} + R_{neuron}}$$
$$= V_{s} \left(1 - \frac{A}{R_{ref}Bx + R_{ref}C + A} \right)$$

Ma Yu

Spin Review

Basic Devices and Phenomena o oooooooooo ooo

Neuromorphic Computing

Spin Review

On Chip Memori o ooooooo

Forward 0**0**

DW Synapse[M.Sharad,IEEE.trans.nano,2012]

Binary Weights

- Location of DW
- Length of channel

Benefits & Issues

- Logic synthesis and pattern recognition
- Require larger number of neurons for a given operation

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic 0 0000000000 000000000	Non-Boolean Computing ○ ○○○○○○○○○○ ○○○○○○○○○	Forward 0 0
New His Country				

DW Synapse Based ANN

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000		0 0000000000 000000000	0 00000000000 00000000	
Spin-Torque Oscillator				

Basic Devices and Phenomena

Basic Phenomena Spin-Transfer Torque Devices

On Chip Memories Boolean Logic Other Logic All-Spin Logic Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

Basic Devices and Phenomena o oooooooooo ooo	On Chip Memories o ooooooo	Boolean Logic 0 0000000000 000000000	Non-Boolean Computing ○ ○○○○○○○○○○○ ○●○○○○○○○	Forward 00
Spin Torque Oscillator				

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000		0 0000000000 00000000	0 00000000000 00000000	

Spin-Torque Oscillator – Two Terminal

Issues

- GMR based STO
 - Can be operated with very low voltage (~10 mV)
 - The sensed signal amplitude is very low that requires complex sensing circuitry to amplify the signal, leading to high power consumption.
- TMR based STO
 - Requires a large bias voltage, leading to energy inefficiency at the device level
 - Can provide large-amplitude output signals

Basic Devices and Phenomena	On Chip Memories	Boolean Logic
000000000	000000	000000000
000		000000000

Forward 0**0**

Spin-Torque Oscillator

Dual-Pillar STO[M.Sharad, APL, 2013]

Ma Yu

Spin Review

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
o 000000000 000		0 0000000000 000000000	0 00000000000 000000000	

Frequency Locking of Multiple STOs

- Magnetic coupling(Limited by phisical design)
 - Spin wave interaction Interaction between STOs
 - Dipolar coupling Facilitate locking of phisically isolated STOs lying in close proximity
- Electrical coupling
- Injection locking

Basic Devices and Phenomena	On Chip Memories		Non-Boolean Computing	
0 0000000000 000		0 0000000000 000000000	0 00000000000 000000000	

Magnetic coupling

Basic Devices and Phenomena On (Chip Memories	Boolean Logic	Non-Boolean Computing	Forward
0 00 000000000 000 000		0 0000000000 000000000	0 00000000000 000000000	

STO Injection Locking[M.Sharad,IEEE.Trans.Magn,2015]

If $f_{I_{AC}} \approx f_{SOT}$ biased by I_{DC} , $f_{SOT} = f_{I_{AC}}$.

Ma Yu

Spin Review

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
0 000000000 000		0 0000000000 000000000	0 00000000000 0000000000	

STO Electrical Coupling[G.Csaba,IEEE.Trans.Magn,2013]

Ma Yu

Spin Review

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	
			00000000	

Spin Review

STO Applications – Image Analysis[M.Sharad, APL, 2013]

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	Forward
0 000000000 000	0 0000000	0 0000000000 000000000	0 00000000000 00000000	•0

OUTLINE

Basic Devices and Phenomena

Basic Phenomena Spin-Transfer Torque Devices

On Chip Memories Boolean Logic Other Logic All-Spin Logic

Non-Boolean Computing

Neuromorphic Computing Spin-Torque Oscillator

Forward

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	Forward
0 0000000000 000		0 0000000000 000000000	0 00000000000 000000000	00

Reference I

- [A.Brataas, nature, 2012] A. Brataas, A. D. Kent, and H. Ohno, "Current-induced torques in magnetic materials," Nat. Mater., vol. 11, no. 5, pp. 372–381, Apr. 2012.
- [R.D,IEEE,1997] R. D. McMichael and M. J. Donahue, "Head to head domain wall structures in thin magnetic strips," IEEE Trans. Magn., vol. 33, no. 5, pp. 4167–4169, Sep. 1997.

	Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	Forward
000000000 0000000 00000000 000000000 000 000000	0 000000000 000	0 0000000	0 0000000000 00000000	0 00000000000 00000000	00

Reference II

- [Y.Nakatani,Magn,2005] Nakatani Y, Thiaville A, Miltat J. Head-to-head domain walls in soft nano-strips: a refined phase diagram[J]. Journal of Magnetism & Magnetic Materials, 2005, 290:750-753.
- [L.Berger, APL, 1978] L. Berger, "Low-field magnetoresistance and domain drag in ferromagnets," J. Appl. Phys., vol. 49, no. 3, pp. 2156–2161, 1978.
- [S.Ikeda,IEEE,2007] S. Ikeda et al., "Magnetic tunnel junctions for spintronic memories and beyond," IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 991–1002, May 2007.

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	Forward
0 000000000 000		0 0000000000 000000000	0 00000000000 000000000	00

Reference III

- [IBM,Science,2008] Parkin S S, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory.[J]. Science, 2008, 320(5873):190-4.
- [Behtash, Nature.nano, 2010] Behin-Aein B, Datta D, Salahuddin S, et al. Proposal for an all-spin logic device with built-in memory[J]. Nature Nanotechnology, 2010, 5(4):266-70.
- [K.Ando,APL,2014] Ando K, Fujita S, Ito J, et al. Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited)[J]. Journal of Applied Physics, 2014, 115(17):172607 - 172607-6.

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	Forward
0 000000000 000	0 0000000	0 0000000000 000000000	0 00000000000 00000000	00

Reference IV

- [H.Yoda,IEEE,2012] Yoda H, Fujita S, Shimomura N, et al. Progress of STT-MRAM technology and the effect on normally-off computing systems[J]. Electron Devices Meeting. iedm.technical Digest.international, 2012, 112(11):41-42.
- [S.Yamamoto, APL, 2010]S. Yamamoto and S. Sugahara, "Nonvolatile delay flip-flop based on spin-transistor architecture and its power-gating applications," Jpn. J. Appl. Phys., vol. 49, no. 9, Sep. 2010, Art. ID 090204.

Basic Devices and Phenomena	On Chip Memories		Non-Boolean Computing	Forward
o 000000000 000	0 0000000	o 0000000000 00000000	0 00000000000 00000000	00

Reference V

- [K.W.Kwon,IEEE,2014] K.-W. Kwon et al., "SHE-NVFF: Spin Hall effect-based nonvolatile flip-flop for power gating architecture," IEEE Electron Device Lett., vol. 35, no. 4, pp. 488–490, Apr. 2014.
- [Akio,APL,2014] Fukushima A, Seki T, Yakushiji K, et al. Spin dice: A scalable truly random number generator based on spintronics[J]. Applied Physics Express, 2014, 7(7):1982-1988.
- [Daniel, DAC, 2012] Morris D, Bromberg D, Zhu J G, et al. mLogic: Ultra-low voltage non-volatile logic circuits using STT-MTJ devices[J]. 2012:486-491.
| Basic Devices and Phenomena
0
0000000000
000 | On Chip Memories
o
ooooooo | Boolean Logic
o
ooooooooooooooooooooooooooooooooo | Non-Boolean Computing
o
oooooooooooooooooooooooooooooooooo | Forward
○● |
|---|----------------------------------|---|--|---------------|
| 000 | | 000000000 | 000000000 | |

Reference VI

- [C.Augustine,IEEE,2011] Augustine C, Panagopoulos G, Behin-Aein B, et al. Low-power functionality enhanced computation architecture using spin-based devices[C]// leee/acm International Symposium on Nanoscale Architectures. IEEE, 2011:129-136.
- [Sheldon, SSCTLD, 1962] Akers S B. Synthesis of combinational logic using three-input majority gates[C]// Switching Circuit Theory and Logical Design, 1962. Swct 1962. Proceedings of the Third Symposium on. IEEE, 1962:149-158.

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	Forward
0 000000000 000	0 0000000	0 0000000000 000000000	0 00000000000 00000000	00

Reference VII

- [A.Sengupta,IEEE,2015] Sengupta A, Roy K. Spin-Transfer Torque Magnetic neuron for low power neuromorphic computing[J]. 2015:1-7.
- [D.Fan,IEEE.nano,2015]Fan D, Shim Y, Raghunathan A, et al. STT-SNN: A Spin-Transfer-Torque Based Soft-Limiting Non-Linear Neuron for Low-Power Artificial Neural Networks[J]. IEEE Transactions on Nanotechnology, 2014, 14(6):1013-1023.

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	Forward
0 000000000 000	0 0000000	0 0000000000 000000000	0 00000000000 00000000	00

Reference VIII

- [M.Sharad,IEEE.trans.nano,2012] Sharad M, Fan D, Aitken K, et al. Energy-Efficient Non-Boolean Computing With Spin Neurons and Resistive Memory[J]. IEEE Transactions on Nanotechnology, 2014, 13(1):23-34.
- [M.Sharad, APL, 2013] Sharad M, Yogendra K, Roy K. Dual pillar spin torque nano-oscillator[J]. Applied Physics Letters, 2013, 103(15):152403-152403-5.
- [G.Csaba,IEEE.Trans.Magn,2013] G. Csaba and W. Porod, "Computational study of spin-torque oscillator interactions for non-Boolean computing applications," IEEE Trans. Magn., vol. 49, no. 7, pp. 4447–4451, Jul. 2013.

Basic Devices and Phenomena	On Chip Memories	Boolean Logic	Non-Boolean Computing	Forward
0 000000000 000		0 0000000000 000000000	0 000000000000 000000000	00

[M.Sharad, APL, 2013] M. Sharad, K. Yogendra, and K. Roy, "Dual pillar spin torque nanooscillator," Appl. Phys. Lett., vol. 103, no. 15, 2013, Art. ID 152403.