Memory \& Logic Based on Spin

Ma Yu

Sep. 2016

OUTLINE

> Other Logic All-Spin Logic
> Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator
> Forward

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices

On Chip Memories Boolean Logic

> Other Logic All-Spin Logic Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

Basic Phenomena

What is Spin?[J.Sun,Nature,2003]

Ma Yu

Spin-Transfer Torque Effect

Ma Yu

Energy of Spin

Energy \& States of Spin
Energy - The energy is the largest at $\theta=90^{\circ}$
State - The stable state is $\theta=0^{\circ}$ or 180°

Laudau-Lifshitz-Gilbert(LLG) Equation

LLG equation models the behavior of the magnetization, m, of a nano-magnet in the presence of an effective magnetic field, $\mathrm{H}_{\text {eff }}$, and a spin current, Is[A. Brataas, nature,2012].

$$
\frac{\partial \mathrm{m}}{\partial t}=\underbrace{-|\gamma|\left(\mathrm{m} \times \mathrm{H}_{\text {eff }}\right)}_{\text {Precession }}+\underbrace{\alpha\left(\mathrm{m} \times \frac{\partial \mathrm{m}}{\partial t}\right)}_{\text {Damping }}-\underbrace{\frac{1}{q N_{s}} \mathrm{~m} \times\left(\mathrm{m} \times \mathrm{I}_{s}\right)}_{\text {Spin torque }}
$$

Where N_{s} is the number of spins comprising the nano-magnet given as $N_{s}=\frac{M_{s} V}{\mu_{B}}, M_{s}$ is saturation magnetizationand, V is the volume of the nano-magnet, μ_{B} is the Bohr magneton.

Basic Phenomena

Details in LLG Equation

Ma Yu

Current-Induced Domain Wall Motion

There are 4 kinds of DMs.

Direction of Magnetic Anisotropy

IMA - In-plane magnetic anisotropy
PMA - Perpendicular magnetic anisotropy

- Néel wall occurs in thin and narrow nanostrips
- Vortex or Bloch wall occurs when the nanostrip is wider and thicker

Current-Induced Domain Wall Motion

- (a)\&(c) accurs in thin and narrow nanotrips[R.D,IEEE,1997]
- (b)\&(d) accurs in wider and thicker nanotrips [Y.Nakatani,Magn,2005]

Electrical current through the DWS could drive a DW in the direction of electron flow.[L.Berger,APL,1978]

Current-Induced Domain Wall Motion

Spin-Orbit Torques(SOT)

$$
J_{S}=\theta_{S H}\left(\boldsymbol{\sigma} \times J_{q}\right)
$$

(a)

(b)

- Spin current: $I_{s}=\theta_{S H} \frac{A_{s}}{A_{q}} I_{q} \sigma$
- I_{s} can be larger than I_{q} for scattering

Topological Insulators

Properties

Behavior - Like a quantum Hall insulator
Current - Similar to SOT

- More efficient than SOT.
- Can improve energy efficiency of spin devices for ultralow power computing at room temperature.
- Haven't found any references designing based on this.

Vertical Spin Valve

Tunneling magneto-resistance(TMR)[S.Ikeda,IEEE,2007]
Layer - Pinned layer \& Free layer
Spacer - Insulator
Function - Conductance is high(P) or low(AP)
Resistance $-R=\left(\frac{R_{P}+P_{A P}}{2}+\frac{R_{P}-R_{A P}}{2}\right) \cos \theta$

Lateral Spin Valves

Ferromagnetic Contacts

- Both injector and detector are FM
- The channel is NM
- Local \& nonlocal measurements

Lateral Spin Valves

Non-Local Measurement

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices

On Chip Memories
Boolean Logic

> Other Logic All-Spin Logic
> Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

Basic Structure

Write Operation

- WL is charged to $V_{D D}$
- '0' $B L \rightarrow V_{D D} ; S L \rightarrow V_{S S}$
- '1' $B L \rightarrow V_{S S} ; S L \rightarrow V_{D D}$
- $V_{D D}$ in ' 0 ' is smaller than that in ' 1 '

Read Operation

- WL is charged to $V_{D D}$
- Give a current then compare voltage and vice versa.

Benefits \& Issues

Benefits

1) Nonvolatile can be powered off
2) Itegration density can be $3-4 \times$ than that of SRAMs
3) The half-select issue in SRAM is absent due to nonvolatile
4) STT-MRAM arrays may be embedded with new functionality at almost no cost.

Issues

1) High write energy
2) Read/write stability
3) Oxide reliability

Domain Wall Based MTJ Structure

(a)

Writing Operation

- WWL $\rightarrow V_{D D}$
- '0' $B L \rightarrow V_{D D} ; W S L \rightarrow V_{S S}$
- '1' $B L \rightarrow V_{S S} ; W S L \rightarrow V_{D D}$

Reading Operation

- $R W L \rightarrow V_{D D}$
- Same as the basic device discussed before.

Improvement

Benefits

- Separation of read and write rurrent path.
- Low resistane in the write current path.
- Large write current doesn't flow through tunnel oxide, the reliability is improved.
- Distinguishability between states in the DWMTJ can be improved by using a thicker tunneling oxide, leading to better cell TMR ratio.

Memory

Racetrack Memory[IBM,Science,2008]

Horizontal racetrack

Ma Yu

Racetrack Memory

Benefits

- Extremely high integration density.
- Average access time will be 10 - $50 n s$ while HDD and MRAM are (5 ms) and ($>10 n s$) perspectively.

Issues

- High current density.
- Thermal noises.
- The latency can cause the access time to be large and variable.

Spin-Orbit Torque Based MTJ Memory Device

Writing Operation

-WWL $\rightarrow V_{D D}$

- '0' $B L \rightarrow V_{D D}$; $W S L \rightarrow V_{S S}$
- '1' BL $\rightarrow V_{S S}$; $W S L \rightarrow V_{D D}$

Reading Operation

- $R W L \rightarrow V_{D D}$
- Same as the basic device discussed before.

OUTLINE

> Other Logic All-Spin Logic
> Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices
On Chip Memories Boolean Logic

Other Logic All-Spin Logic
Non-Boolean Computing
Neuromorphic Computing Spin-Torque Oscillator
Forward

Characteristics for logic

Five essential points:[Behtash, Nature.nano, 2010]

- Concatenability Input and output should be in the same form.
- Nonlinearity The input and output should be bistability ,i.e. one should provide digitization of information.
- Nonreciprocal Output shouldn't influence the input.
- Gained Output must be charged by indenpendent sources.
- Constructable All other logic functions can be constructed based on a minimal set of operations.

Normally-off Computing

Instant-on \& Normally-off Computing[K.Ando,APL, 2014]

- The present computers are designed on the premise that power will always be supllied.
- Normally-off computer is only suplied while operating.

Requirement of Normally-off computer

- Non-volatile devices that don't require a power supply to remain inforemation.
- High speed operation to manipulate the information.

Normally-off Computing

Advantages

- High density
- High speed

Advantages

- MRAM technologies have made marvelous advances
- Effective power reducts by over 80% in mobile CPU [H.Yoda,IEEE,2012]
Figure: Layered structure of computer systems.

Other Logic
Normally-off Computing[K.W.Kwon,IEEE,2014]

Backup Operation Turn on BEN.

Resume Operation

$E Q=1, R E N=0$
$E Q=0, R E N=1$.

True Random Number Generators[Akio,APL,2014]

- PRNGs are implemented in software and use deterministic algorithms to generate a sequence of RNs.
- For highly secure data encryption we need TRNGs, which are implemented in hardware.

True Random Number Generators

1) Reset to a known magnetization state;
2) Switch with probability of 0.5 ;
3) Read the generated random bit. Compared.

Switching Probability

$$
P_{S W}=1-\exp \left\{-\frac{t}{\tau_{0}} \exp \left[-\Delta\left(1-\frac{I}{I_{c 0}}\right)\right]\right\}
$$

Where t is the duration of the current pulse, τ_{0} is the attempt time, Δ is the thermal stability parameter of the nanomagnet, and $I_{c 0}$ is the critical switching current at $0 K$.

Other Logic

True Random Number Generators

Ma Yu

Other Logic

All-Metallic Logic

- Coupling layer can be p or n type.
- Similar to pMOS and nMOS.

All-Metallic Logic[Daniel, DAC, 2012]

Advantages \& Disadvantages

Lower voltage supplied - Sub-100mV. Higher leakage and worsen energy efficiency.

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices
On Chip Memories Boolean Logic

Other Logic

> All-Spin Logic
> Non-Boolean Computing
> Neuromorphic Computing Spin-Torque Oscillator
> Forward

A general ASL devices[C.Augustine,IEEE,2011]

- Concatenability Spin orientation.
- Nonlinearity

Energy and angle.

- Nonreciprocal
$T_{3} \& T_{4}$.
- Gain Independent VDD.
- Constructable Will discuss later.

ASL with no Clock

ASL with Clock

- Not rely on standby power. VDD is supplied only when information propagation.
- Not have to rely on the difference in polarization (highP and lowP) of input and output terminals.

ASL with Clock with Biaxial anisotropy

+ Switching time of ASL_CB can be less than 5 psec while the former two devices are more than 50 psec.

All-Spin Logic

ASL with Clock with Biaxial anisotropy

Ma Yu

Majority gate[Sheldon, SSCTLD, 1962]

Definition Majority gate

For a majority gate function M, we have the following result, where N_{1} and N_{0} are number of 1 and 0 .

$$
M\left(x_{1}, x_{2}, \ldots, x_{k}\right)= \begin{cases}1, & N_{1}>N_{0} \\ 0, & N_{1}<N_{0}\end{cases}
$$

Theorem

A switching function F can be realized with only majority gates iff for any two n-bit input combinations, r_{i} and r_{j}, there exists an x_{k} such that

$$
r_{i k}=F\left(r_{j}\right) \quad \text { and } \quad r_{j k}=F\left(r_{j}\right)
$$

Implementation of Majority gate

Ma Yu

Functionality Enhanced ASL

An example of FEASL - All Adder Implementation.

$$
\begin{gathered}
C_{\text {out }}=M_{3}\left(A, B, C_{\text {in }}\right) \\
S u m=M_{5}\left(A, B, C_{\text {in }}, \bar{C}_{\text {out }}, \bar{C}_{\text {out }}\right)
\end{gathered}
$$

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices
 On Chip Memories Boolean Logic

Other Logic All-Spin Logic
Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator Forward

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices
 On Chip Memories Boolean Logic

Other Logic All-Spin Logic
Non-Boolean Computing Neuromorphic Computing Spin-Torque Oscillator
Forward

Neuromorphic Computing

Why we use Neuromorphic Computing?

- Extremely efficient in perception and cognition
- Significantly less power and area

STT Magnetic Neuron[A.Sengupta,IEEE,2015]

STT Magnetic Neuron

Ma Yu

Neuromorphic Computing

Bipolar Lateral Spin Valve Neuron

$-\rightarrow$ charge current
\rightarrow spin-polarized current

Neuromorphic Computing

Unipolar Domain Wall Neuron

- Direction of I_{S} presents excitory or inhibitory.

Neuromorphic Computing

Unipolar Spin Hall Effect Neuron

Ma Yu

Soft-Limiting Nonlinear Neuron

SNN are preferrd in challenging pattern recognition.
Definition
SNN is neuron with intermediate outputs between the two extreme states.

Improved modeling capacity

- Higher network accuracy
- Lower network complexity

Soft-Limiting Nonlinear Neuron[D.Fan,IEEE.nano,2015]

Neuromorphic Computing

Soft-Limiting Nonlinear Neuron[D.Fan,IEEE.nano,2015]

$$
R_{\text {neuron }}=\frac{A}{B x+C}
$$

Where A, B, C are constants.
:

$$
\begin{aligned}
V_{0} & =V_{s} \frac{R_{\text {ref }}}{R_{\text {ref }}+R_{\text {neuron }}} \\
& =V_{s}\left(1-\frac{A}{R_{\text {ref }} B x+R_{\text {ref }} C+A}\right)
\end{aligned}
$$

DW Synapse[M.Sharad,IEEE.trans.nano,2012]

Binary Weights

- Location of DW
- Length of channel

Benefits \& Issues

- Logic synthesis and pattern recognition
- Require larger number of neurons for a given operation

Neuromorphic Computing

DW Synapse Based ANN

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices
 On Chip Memories
 Boolean Logic

Other Logic All-Spin Logic
Non-Boolean Computing
Neuromorphic Computing
Spin-Torque Oscillator
Forward

Spin-Torque Oscillator

(a)

(b)

(c)

Ma Yu

Spin-Torque Oscillator - Two Terminal

Issues

- GMR based STO
- Can be operated with very low voltage ($\sim 10 \mathrm{mV}$)
- The sensed signal amplitude is very low that requires complex sensing circuitry to amplify the signal, leading to high power consumption.
- TMR based STO
- Requires a large bias voltage, leading to energy inefficiency at the device level
- Can provide large-amplitude output signals

Dual-Pillar STO[M.Sharad,APL,2013]

Frequency Locking of Multiple STOs

- Magnetic coupling(Limited by phisical design)
- Spin wave interaction - Interaction between STOs
- Dipolar coupling - Facilitate locking of phisically isolated STOs lying in close proximity
- Electrical coupling
- Injection locking

Magnetic coupling

STO Injection Locking[M.Sharad,IEEE.Trans.Magn,2015]

If $f_{I_{A C}} \approx f_{S O T}$ biased by $I_{D C}, f_{S O T}=f_{I_{A C}}$.

STO Electrical Coupling[G.Csaba,IEEE.Trans.Magn,2013]

Ma Yu
Spin Review

STO Applications - Image Analysis[M.Sharad,APL,2013]

Process

1) Initialization
2) Pixel \rightarrow

Current \rightarrow STO
3) Coupling
4) Output

OUTLINE

Basic Devices and Phenomena Basic Phenomena Spin-Transfer Torque Devices
On Chip Memories Boolean Logic

Other Logic All-Spin Logic
Non-Boolean Computing
Neuromorphic Computing Spin-Torque Oscillator
Forward

Reference I

圊 [J.Sun,Nature,2003]Spintronics gets a magnetic flute
囯 [A.Brataas, nature, 2012]A. Brataas, A. D. Kent, and H. Ohno, "Current-induced torques in magnetic materials," Nat. Mater., vol. 11, no. 5, pp. 372-381, Apr. 2012.

R [R.D,IEEE, 1997] R. D. McMichael and M. J. Donahue, "Head to head domain wall structures in thin magnetic strips," IEEE Trans. Magn., vol. 33, no. 5, pp. 4167-4169, Sep. 1997.

Reference II

囲 [Y.Nakatani,Magn, 2005] Nakatani Y, Thiaville A, Miltat J. Head-to-head domain walls in soft nano-strips: a refined phase diagram[J]. Journal of Magnetism \& Magnetic Materials, 2005, 290:750-753.

- [L.Berger,APL,1978] L. Berger, "Low-field magnetoresistance and domain drag in ferromagnets," J. Appl. Phys., vol. 49, no. 3, pp. 2156-2161, 1978.

围 [S.Ikeda,IEEE,2007] S. Ikeda et al., "Magnetic tunnel junctions for spintronic memories and beyond," IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 991-1002, May 2007.

Reference III

嗇［IBM，Science，2008］Parkin S S，Hayashi M，Thomas L． Magnetic domain－wall racetrack memory．［J］．Science，2008， 320（5873）：190－4．

围［Behtash，Nature．nano，2010］Behin－Aein B，Datta D， Salahuddin S，et al．Proposal for an all－spin logic device with built－in memory［J］．Nature Nanotechnology，2010，5（4）：266－70．
目［K．Ando，APL，2014］Ando K，Fujita S，Ito J，et al．
Spin－transfer torque magnetoresistive random－access memory technologies for normally off computing（invited）［J］．Journal of Applied Physics，2014，115（17）：172607－172607－6．

Reference IV

R [H.Yoda, IEEE, 2012] Yoda H, Fujita S, Shimomura N, et al. Progress of STT-MRAM technology and the effect on normally-off computing systems[J]. Electron Devices Meeting. iedm.technical Digest.international, 2012, 112(11):41-42.

- [S.Yamamoto,APL, 2010]S. Yamamoto and S. Sugahara, "Nonvolatile delay flip-flop based on spin-transistor architecture and its power-gating applications," Jpn. J. Appl. Phys., vol. 49, no. 9, Sep. 2010, Art. ID 090204.

Reference V

嗇［K．W．Kwon，IEEE，2014］K．－W．Kwon et al．，＂SHE－NVFF：Spin Hall effect－based nonvolatile flip－flop for power gating architecture，＂IEEE Electron Device Lett．，vol．35，no．4，pp． 488－490，Apr． 2014.

囯［Akio，APL，2014］Fukushima A，Seki T，Yakushiji K，et al．Spin dice：A scalable truly random number generator based on spintronics［J］．Applied Physics Express，2014，7（7）：1982－1988．

囯［Daniel，DAC，2012］Morris D，Bromberg D，Zhu J G，et al． mLogic：Ultra－low voltage non－volatile logic circuits using STT－MTJ devices［J］．2012：486－491．

Reference VI

- [C.Augustine,IEEE,2011] Augustine C, Panagopoulos G, Behin-Aein B, et al. Low-power functionality enhanced computation architecture using spin-based devices[C]// leee/acm International Symposium on Nanoscale Architectures. IEEE, 2011:129-136.

围 [Sheldon, SSCTLD, 1962] Akers S B. Synthesis of combinational logic using three-input majority gates[C]// Switching Circuit Theory and Logical Design, 1962. Swct 1962.
Proceedings of the Third Symposium on. IEEE, 1962:149-158.

Reference VII

[[A.Sengupta,IEEE, 2015] Sengupta A, Roy K. Spin-Transfer Torque Magnetic neuron for low power neuromorphic computing[J]. 2015:1-7.

囯 [D.Fan,IEEE.nano,2015]Fan D, Shim Y, Raghunathan A, et al.
STT-SNN: A Spin-Transfer-Torque Based Soft-Limiting
Non-Linear Neuron for Low-Power Artificial Neural Networks[J]. IEEE Transactions on Nanotechnology, 2014, 14(6):1013-1023.

Reference VIII

囯 [M.Sharad,IEEE.trans.nano,2012] Sharad M, Fan D, Aitken K, et al. Energy-Efficient Non-Boolean Computing With Spin Neurons and Resistive Memory[J]. IEEE Transactions on Nanotechnology, 2014, 13(1):23-34.
[[M.Sharad,APL, 2013] Sharad M, Yogendra K, Roy K. Dual pillar spin torque nano-oscillator[J]. Applied Physics Letters, 2013, 103(15):152403-152403-5.

囲 [G.Csaba,IEEE.Trans.Magn,2013] G. Csaba and W. Porod, "Computational study of spin-torque oscillator interactions for non-Boolean computing applications," IEEE Trans. Magn., vol. 49, no. 7, pp. 4447-4451, Jul. 2013.

Reference IX

R
[M.Sharad,APL,2013] M. Sharad, K. Yogendra, and K. Roy, "Dual pillar spin torque nanooscillator," Appl. Phys. Lett., vol. 103, no. 15, 2013, Art. ID 152403.

